A New Approach to Cluster Datasets without Prior Knowledge of Number of Clusters

نویسندگان

  • Ch Swetha Swapna
  • V V Kumar
  • V R Murthy
چکیده

The paper discusses yet another approach of clustering datasets whose cluster numbers are not known beforehand. The suggested approach effectively determines the number of clusters or partitions while running the algorithm. The proposed method is only limited to partitional clustering inspired from the K-means algorithm. In this work a Modified TeachingLearning-Based Optimization (MTLBO) is used to form the clusters and determine the number of clusters on the run. The comparison of the results obtained by MTLBO is done with the classical TLBO and Classical Differential Evolution (DE) technique. The results show that MTLBO gives better accuracy than the other two with respect to the number of function evaluations and cluster validity measures. Several benchmark datasets are simulated from the UCI machine repository and results are tabulated in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

Identification of Power Stripping Resources with Fuzzy Cluster Dynamic Approach (Case Study: West Azerbaijan Province)

Reducing electric power theft is a significant part of the potential benefits of implementing the concept of smart grid. This paper proposes a data-based approach to identify locations with unusual electricity consumption. The new distance-based method classifies the new data as violator costumers, if their distance is long to the primary consumption data. The proposed algorithm determines the ...

متن کامل

A Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population

Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...

متن کامل

Oil Reservoirs Classification Using Fuzzy Clustering (RESEARCH NOTE)

Enhanced Oil Recovery (EOR) is a well-known method to increase oil production from oil reservoirs. Applying EOR to a new reservoir is a costly and time consuming process. Incorporating available knowledge of oil reservoirs in the EOR process eliminates these costs and saves operational time and work. This work presents a universal method to apply EOR to reservoirs based on the available data by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015